Math 131A-1: Homework 6

Due: May 6, 2016

1. Read Sections 17-18 in Ross.
2. Do problems 14.2 (a),(f), 14.3(b),(e), 14.4(c), 14.5, 14.8, 14.12, 14.13 in Ross.
3. Do problems 15.1, 15.4(b) in Ross. [You can use what you know about integration from calculus on 15.4. We'll define it properly later in this course.]
4. The number e. You have probably seen in calculus that Euler's number e may be defined as the limit of the sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$. This is sometimes described as the interaction between the "irresistible force" - to wit, an exponent approaching infinity - and the "immovable object" - to wit, a base approaching 1. Another possible definition of e is

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

We will show these expressions are both convergent, and in fact coincide. Let s_{n} be the partial sums of the series $\sum_{n=0}^{\infty} \frac{1}{n!}$.

- (a) Show that $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges. Call the limit s.
- (b) The binomial theorem states that, for $n \geq 1,(1+x)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^{k}$. With this in mind, show that for $n \geq 1$,

$$
a_{n}=\frac{1}{0!}+\sum_{k=1}^{n} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}
$$

Conclude that $a_{n} \leq s_{n}$ for all $n \geq 1$, and therefore $\limsup a_{n} \leq s$.

- (c) For $n \geq m$, show that

$$
a_{n} \geq \frac{1}{0!}+\sum_{k=1}^{m} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{1}{k!}
$$

Letting $n \rightarrow \infty$ for fixed m, observe that we have $\liminf a_{n} \geq 1+1+\frac{1}{2!}+\cdots \frac{1}{m!}$. Since m was arbitrary, conclude that $\lim \inf a_{n} \geq s$.

- (d) From the above, conclude that $\left(a_{n}\right)$ converges and $\lim a_{n}=s$. Therefore the two definitions of e above are convergent and equal.

